

Domestic Heat Pumps – Myths & Legends What's Held Deployment Back?

16th March 2021

The ultimate renewable energy source

Why act now?

- The IPCC report gives us limited time to stop irreversible damage
- Current Building Regulations permit development that is adding to the problem by embedding yet more fossil fuel dependency
- Public awareness is shifting rapidly
- Generational pressure
- The Greta and Attenborough effect
- We have technologies available now that are tried and tested
- All industry watchers anticipate a much more regional and distributed energy (CCC and National Grid, etc.)
- The very rapid development of the electric vehicle market is transforming the power generation and distribution sector and plays to growth in the electrification of heat

What has held heat pump deployment back?

- Building Regulations grid carbon factor
- UK raw fuel spark gap favours gas
- Fossil fuel subsidies, "green" levies are applied to electricity only – 18% or so inflationary result
- Lack of robust fossil fuel standards environment
- Poor renewables subsidy strategy
- The interests of the incumbents
- Consumer awareness
- Heating industry skills and knowledge

The "Spark Gap"

What drives the electrification of heat?

Figure 4.05 - Projected carbon factor of heat based on HM Treasury Green Book marginal emission factors

CO₂ from Heating Systems

Grid at-> (GMT) 179 grams CO2 / kWhe is emitting->

45 Ground Source Heat Pump (400%): 56 Ground Source Heat Pump (320%): 179 Direct Electric heating (100%): Gas boiler (85%): Oil Boiler (85%):

215 320 Coal (50%): 630

www.gshp.org.uk

GSHPA[™]

Displaying the CO2 released from different heating technologies. GSHP values are for 2 typical levels of efficiency; 320% (COP=3.2) & 400% (COP=4). Grid carbon intensity uses real-time data. The value reflects the decline in generation from coal & the growing contribution from renewable power technologies.

Data courtiesy of National Grid CO2 Intensity API - Original thinking JCW Ranker

View live UK generation status

Select new area -----V------

UK Average

Scotland

N. Scotland

S. Scotland

N.E. England

N.W. England

Yorkshire

Wales

delivered

North Wales

South Wales

East Midlands

West Midlands

East England S.E. England

South England

South West

England

London

Heat pumps 101

Heat pumps 101 – what do they look like?

Heat pumps 101 – where can they go?

Heat pumps 101 – any emitter type

Heat pumps 101 – all house types

Carbon emissions impact

When considering a hear pump installation)									
pdated :	June	2020							
Stall Heisting (= DHW) Deimand	15,200	ć₩h annum	Note:						
SFF	2.50								
Electricity Consumed By Hest Fump	4,343	ćWh annum	Note :						
			Carbion			Carbon Dioxida	Hest Fump CC2 Saving	Saving	
Fuel/Carbon Emissions		Bailer Efficience %	Dioxide Factor		Cemend Whannum	Emissions	Against Fuel	With Heat Fump	
Electricity (National Grid)		130	0.233	kgCC2 kWh	15,200	3,542	2,530	7156	
Cil		88	0.268	cgCC2 (Wh			3,565	7 85%	
F3 Gss		90	0.215	qCC2 (Wh	16,889	3,631	2,619	7.2%	
fains Gas		92	0.184	«gCC2 ∢Wh			2,028	675%	
cal		80		egCC2 (Wh				84%	
icmass (Figh Quality Fellets)		85	0.040	egCC2 «Wh	17,882	715	-297	4 156	
lectricity - Heat Fump		250	0.233	cacca (Wh	4,949	1.012			

Carbon factors taxien from Defra figures for 2020.

The home owner is key – what factors matter?

- Fossil fuels work, or do they?
- Resistance to, or fear of, change
- Very low valuation of energy (resistance to insulation)
- Capital cost of change
- Operational costs (spark gap)
- Knowledge & understanding
- Environmental attitudes (Sir David Attenborough, Greta) and increasing intergenerational pressure
- Regulations (MEES, Building Regulations)
- Government subsidy
- A better offer (controllability), transitional approaches (hybrids)

Incumbent fear & doubt

Massive radiators, probably not!

Garden a disaster, yes, but worth it, or drill!

Re-plumb the whole house and UFH, just not necessary!

Installing central heating was a disruption, but stay with coal, really?

Renewable Heat Incentive – worked example

- Average family home 150m²
- Peak thermal load 7.5kW
- Estimated annual energy demand for heating & potable hot water – 16,500kWh
- Air-source operating at a seasonal performance factor of 2.8
- Ground-source operating at an SPF of 3.4
- Air-source subsidy value approximately £1,150/annum based on a tariff of 10.92p/kWh
- Ground-source subsidy value approximately £2,465/annum based on a tariff of 21.29p/kWh
- Budget : air-source : £7,000-£10,000
- Budget : ground-source : £11,250-£22,500

A glimpse into the future

- Octopus Energy Agile Tariff consumers demonstrate significantly different consumption profiles compared to average nonagile consumers
- Low cost electricity is a proxy for low emissions
- Initial benefits for EV charging but progressing to heat pumps with thermal storage

New funding mechanisms required

- Improved application of "time of use" tariffs and thermal storage
- Government action on the spark gap the polluter pays!
- Encouraged use of waste heat
- Active development of co-located heating and cooling demands
- Improved access to affordable capital
- Third party investment in in-ground assets
- Accessing the value of flexibility
 - Grid balancing
 - Dynamic Response, Primary Response, Secondary Response, Capacity Mechanism
- Co-location with low or zero emissions electricity generation & storage
- Long term government policy to enable all of the above

Government policy requirements

- Local government to lead by example Public Building Decarbonisation Fund
- Local plans to proactively seek out waste heat opportunities and easy the planning pathway for heat networks
- Central government to start tackling the spark gap
- MHCLG to revise Part L urgently and to include an annual review mechanism for carbon factors
- Adoption of Low Temperature Heating qualification
- Consider voucher funding for PAS 2035 home assessments

Thank you

www.hpf.org.uk (coming very soon)

Bean Beanland
Director for Growth & External Affairs
Bean.Beanland@hpf.org.uk
info@hpf.org.uk

